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.\bstract

A method for ●valuating image-recovery algorithms it presented, which is band a the numerical assessment
of hcm well ● apecifled visual task may be performed using tk reccmstlucted images. A Monte CWIO

technique u used to simulate the complete imaging proceu including the generation & ace.nm appropriate to
the ki.red application, subsequent d~a taking, image recovery, and performan ce of the stated task based
on the 6A image, The use of ● pmxbrandan simulation proc~ permits me to aJrns the response of
m i.nlqpmcovery algorithm to many diffklwnt Menu. Nonlineu algwitluru ut readily ●valuated. The
u.eeful.neua oi- this method is demonstrated thrcmgh s study of the algebraic monstructicm technique (ART).
wb.i-4 reccmstructt images frcan their projKtkms. In the i.m+ing situmicm studied, it iJ fcnmd that the use of
the nonnegativity axutraint in } RT can dramatically increasa tha detectabi,Uty ci object- in some instancet,
eqmially when the data ccmsist of a Lmitd number of noiceleaa pmjectias.

Introduction

Fbr ●very indi.r~t imaging application it it necessary to CINXMOan image-recovery algorithm to obtain a
fud im.agQ. ThiI choice becomes critically important when the available data am limited and/m ue noisy.
%mraJ ci~ of meuurea hava been ernpioyed in the pact upon which to b- ~recovay algoritimu
[1]. There are thcwe based on Lhe fidelity of the wcnatructed images, such u tht conmtiond measure
of minirmm rmn dil%rence betwwn the reccmshuctioc and the origb,i ~. Experience teadeg UJ that
this & cot dwaYs seem to be correlated with the usefulness of ~ wd so doos not help one o.elect

an algorithm. Them am maasurca bad oil how ckdy Lb estimad reconstruction reproducm the input

datm The most popular of [h, baud on Imt-wquarea rtiidual (or ‘ “ chi-cquareci). is known to be
il.1-ccmditioned or ●wn worm, ill-pod [1]. To betta ccmdkm tho problem, it i- cften prop~ to cotutrain
the lmst-squuea objective in SIXYM●y. Fbrthm, them are meaetuti that combine the two prQVIOUS ones,
U.lcll M maximum a pntcron reccmstruction, WhiCh attempt I to bd8JlC9 th~ match to the data a@mt the
relatimsh.ip of the recons~ruction to the known ensamble prol-mbilky distribution [2].

TIM h.ndamental tanc~ dopted in this papa is that th. owml.i purpme of the imaging procedure is
to providecefiam specillc mf~tion d>out the ob~t or sc~a under investigation. Consequently, in the
spprouh to algcrithm ●vaiIMtkm pmwrued here, an algorithm is to be judged on the bmis of how nil one
can parfam ttated viruBI tacks using the reconmtructcd irnaget.

Flgum 1 displays the ouccemive 11.ob in an unaghg c.hdn. It anphdzec that all the ekrnents C4 the
im~ng syotem hwu an ●ffect cm th. End intm-pwatkm af the scme and thus must all be considered III
waluating the elTativmeas of the sy~tam. In actuality, the pcrformnxi ce of an imaging task is ● rubtie procev
becaune thera ue many s,ltMid.Iuy } mtlu tdo~ v,tdch lnfcmn.ation impassed. Th~ influence of these irnpliclt
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Figure 1: Diagram of the complete process involved in the performance of a visual @k. The dashed lines
indiate the paths taken by auxiUary information, which mut be available to the observer in order for him
to nAe ● decision about reality.

wu.rw of prior infommtiori cm the W in.kenca is not well understood. Here, tank perfornum ce wdl be
●valuated under an explicit set & aasumptimu.

RX linear imaging systems thg effects of image noise on tank perforrnan ce can be predicted for a vuiety of
simple tuk.s [3]. The same cannot be said of the effects of utifacts, The masking effects of measurem ent iloiee
are truly random in nah.m, The random noise proceso remdts in each set of m easuremantm being different,
evmt when the scene being imaged does not change. Some kinds of & tifact appaar w fixed patterm and do
not den behave like stationary noiaa. However, thae created by m Lnauflkient numbar of measurements
C.MImanifest themselves an sewx@gly unpredictable imegtdariti~ that look hke noim, but in a atdct sense,
they are not. The p~ttm m determined by the scene being IxrM#. Thmefore, it is necessary to vary
the scene in ● realistic way to teathow wall an algorithm dispenses with artifacts. For axample, ;he objecte
in the scene are na-rnally rwdomly placed dative to the climretely sampled meuuram cnts u wall u to the
recowtruction grid. Hoth of th~ paitioni.ngs might afhct the reccms~ructlon, Thu ● dngk reaUzation
of a simple tcene is canpletely inadequate to ]udga ● recastncticm dgorlthm. h ;~ neces~ to obtain a
statistically meaningful •ver~ ofth rosponsa of an algaitbm to rnqy rea.lizatlm.t .( the ensemble of scenem
with which it must cope. It is unclear whothor or not such ● global app~ to t~k perfo~,ce Is amenable
t~ thmxetical treatment. The imphcl wuraging ovu dlmawta s.ampLingI Is di~cuh to hsndl@ mnlytical.ly.
I%tbnnom, it would be dif%ndt to deal with ncmlimar reccmhuctlon or t~k prforKMIIce algcuithma. To
overcome theu deflciadm, tho pmpoA m~hod h based upcm computer ei.mulation of scerms ●ppropriate
to the desired application, mbcquant dsta takhg ud analysh of the dats. A Monto Carlo techn.lque, OIM
that employs psaudc+random nundmrt to gcnorate ltm rettdtm, imused in this dmu.laticm because It can readily
provid. the ACI* noted vuiationa within the unsamblt. WtJmrmore, any new oource d tmcertai.nty c~n
●asily be Incorporated into the simulation by olmply adding randomness to the appropria~~ varhble through
the introduction of a pssud~raiidom number.

Method

The propowd method of evaluating irrug~recovery algmith.rru●mploya n Monte ~;arlo !rchnique to

km.late the ●ntire i.rr@ng proceu Erorn the beghming to the tl.n.al tmk perfonnarm. To begin with,
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one randomly genemtes representative scenes and the corresponding sets of measurements. The specilied
casks are then pa-formed using the recomtmcted scatea. Fimliy, the accuracy of the task perfomnmce is

evaluated. The advantage of this numeiicd approach is tint it readily handles complex imaging situations,
nonstationary imaging characteristics, and nonlinear reconstruction algorithms. Its major CLisadwmtage is
that it provides an evaluation that is valid only for the specific imaging situation investigated.

The proposed method proceeds m follows. First, the whole problem must be completely specified:
a) Mine the class of scenes to be imaged including as much ccunplexity aa ●xists in the intended appli-

cation. Variations in scene from one redizaticm to another should be fully speci!led.
b) Define the geometry of the memu-ernents. The deficiencies in the measurements such M blur, uncer-

tainties in the geometry, and uncertainties in the measu.rermmta (noiee) should be apeci.fmci. variations of
these uncertainties with position as well u intercomeiation.s between them could be included.

c) Defie clearly the tmk to be performed. The tamk might be simpie detection of a known object againat
a known background, for ~ple. Alternatively, it could be ci.huiminat ion between two types of objects,
or aoxnettig ma-e complex, such as multiple disc rumination, parameter e8tirn8tion, ●tc. The funclmnental
amunptiona made must be explicitly stated.

d) Define the method of task perfcmnan ce. This shcndd be cotuistent with the intended application. If
tbe task it to be pa-formed by computer, then the intmded analyti algorithm may be uned. Lf the task is
to be perfmned by ● human obserwm, come app rcaimathm to the human should be uwd. Alternatively,
a ~-iikelihcmd algorithm (ided obeemer) may be eznpioywcl to defl.ne the best pomible performance
(un&r the prevailing amu.mptiau made about the extant of ●uxilky informtiicm).

The Amu.iation procedure is then perfomned by doing the following:
e) Create * representative scene and the comwpcmding m eamumrmt datm by mean.a of a Monte Carlo

simulation technique. All vuia.tiom in scene content and uncertainties in the measurem ems are included by
meant of pseudo randcxn s.el=tion of the uncertain parameter.

f) Reccmstnct the ~ene with the algorithm being tated.
g) Perfcrm the specified tmk using the mccmshucted itmge,

h) Repeat stepc e) through g) ● su.fkient number of timet to obtain the necessary statistiu on the
accuracy of the t~k perfo~ce.

Fdy deterzn.iae how well the task k been pdmmed, m the average:
i) Evd@ the t~k pa-fomnance. F& binm-y ciiscriminaticn *ks (of the ya-no vuiety), ● receivm-

operating ckacteriotic (ROC) cu.me [4] ~ be genamted. In a vq precise treatment, one might use t!~e
Baym’ meamre W on the raiatiw cats d making false or true ccmciusicms. For parameter estimation
tuks, the Ltandardmeuure of rms anu ndght be employed.

Example - Evaluation of non.negativity constraint

The uduinaa of the ncmnegadvity constraint in the algebraic mconstntction techrdque (ART) [5] will
now be ex-piored to demonstrate km the propcned medmd cart be uwd. It shcndd be noted timt such ●

constraint makes the rmpocw d the twccmstruction algorithm nonlinau. As inch, the t~k perbrnan ce for
eithar noise or utifacto it not ammable to linear adyds. For the prawnt example, the mcene h ~m.rrted
to cauict of a number of ncm-uwrlapping dim placed on ● mm background, For thitexample, each seem
contains 10 high-contrast discs ofmmplitud~ 1.0 mnd 10 !cm-ccmtrast dmcs with unpiltude 0.1, The dl~cr are
randomly piaced witid.rt ● circle of reconstruction, which b a diameta of 128 pixe.h in the reconstmcted
irnagc. The d.iuneter of euh disc IS 8 pixais. ‘I%. first of the da of kmgec gmermtxi forthew te~tti~
shown in Fig. 2. In this computed tom~aphic (CT) problem, the rncamrcmento are asoumed to consist d
a spFci,fieci number d puaJ.i~ pm~ticmm, .ti catai.r@ 128 ~ples.

The above choices forthioexarnpie am made b~ they provide a cituatkm in which the normegativlty
ccmstr~nt it Ukely to ~ve s ~ub~tuti~ &Qct, ~ the Udtd data-taking cir~twces we will :oruider,
the ti~-con~-t ~tc~ p-educe ~u artti~ts ~ the ~cmstructiom, wkdch make it d.iflicuit to detect the
icw-contrut onos, The art,if~tc produced by them idgh-ccmtrmt dioct dup~nd F ~their positions. Thw, it is

impcmtant to allow for random pluement of the cUscOto mdcm.ixe the mrti.facts. In mme of the test c-em
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Figure 2: The fht ruidomdy generated scene ccmsisting of 10 high-contrut and 10 low-contrast discs. The
evaluation of dA is hued on an averageovertenmi.milarscenes.

demribed below, random noise is added to the proj~tion me~ ents. For three, a Gm.usian-distributed
rmndun number germs.tor with zero mean is used. This meam that negative projectica~ are possible, ●ven
though ihe object itAf is nonnegative. While tb.h mny wan ridiculous to thecreticiam, it is not at varkce
with many experimad tittion.s, as, for example, when the projections are derived from the mensuranent
of the attenuatim d x rays.

The ART algorithm is employed in these examples to reccmstict the origi.nd scme. Ten iteration
of ART are uoed thmugbut, Variable rekation (or damping) factam an’ used to att.tmuate succemive
updates during the :-cmatruction. T& choice d the relaxation factor is ● ccmplex issue, which will not be
dimmed in detail hare but will be addressed in ● future publication deaUng with the optind choice of the
reluatim fa.ctcam. FCR the examplu p~ted here, the algdthm begins with ● relaxation i~~:tor of 0.2 for
100 views and 1,0 for the other ~, which involve limit~ nurnhm of projections. The rekation fa.ctcm
are multiplkl by 0.8 Jtar each itcrtiion, resulting in a fbal factor that is about oevun times wnaller than
the initial one. This prmddes mguhrkticm in the ~ttiicm procedure, which convarga to s lr-t-s~
solution in the Limit that the -tion fact- apprcdm Z- [6]. The result of mccmstmctlng Fig. 2 from
12 noi~hm view~ spanning 180° is chown in Fig. 3. The memi.ugly randan fluctuation in the background
cm actual.1~ cu-tifacto produced by thv U.rrdtetd number of projections and mice umhdy b the high- contrmt
CLOCS.At tit tight, it appeus that tie namegativity ccmtrtit improv~ tho mconstmction cmsidembly
in that it h~ reduced the ccmfudon caused by the fluctuations in the bdgrcmnd. Eiowevm, some of the
Iow-contraat discr hve Wt ~n reproduced. Nw, there still rernaAn many fluctuaticms in the backgrmmd
that may mitlmc! me to tuapect the presence of discs in places where none exiet in malJty. Thus, on the basis
of thit tingle example, cma cumot say with cmainty whether or not tl-w nonnegativity constrtit improv~
the detection of th~ low-contr~t diets. A stntjstically dgn.ilicant ccmpdscm betwmm ~cmshucticJM with
rnd without tne cmtraint rnut be made to aJsms it- vnlue,

‘h tuk to be perfornmd it -oumed to be the tlm.pl~ detecticm d the low-contr~t disco, It It mnuned
thnt the podtkn d a pcdble cUOcio known beromhand aa is tha background, To parfcmn the mttied tatk
of detection, it iti asmuned that the turn over tile area of the dJsc provlda an appropriate decisicm varicble.
Tlic it an ●pprcmimation to tbo matched filter, which ic known to be the optimum deddcm variable when the
Iumgw io cmmpted by additin u.nccmwlxed Guidan Iioite [4]. Th10 ignores the blumi.ng effects of the finite
reduticn d the d.iwrately-apled recomtru~ ticm. It Am d= not @e into mcou.nt t!-w known corrdation
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Figt!re 3: Recorutructioru of Fig. 2 fran 12 noiseless parallel projections mbtendi.ng 18@ obtained -with the
ART algorithm (right) with and (left) without the non.negativity constraint. These i.maga are displayed at
high contmst to show the low-ccmtrast chca of interest.

in the noise in CT reconstructions [7] that h.we b- derived fkmn projecticmn ccutahing uncomehted noine.
Nor k it take into ~count the efTects b the non.negativity ccmtrai.nt b on the character d the noim.
After reccmstructicm, the sum in each regioL where the IOw-catrast d~ts are bmn to exist =e cdmlated,
u well m theme over each region where ncme eAst. These two tia ~ts may be clhplaywl as bhtogramw in
this decision tide @ u shown in Fig. 4. A dJsc will be said to be presmt at ●ach locatioa where the value
of the deciticm variable is dove ● chmen tkhdd, T’iie probability tbt the presence of a ditc is ccmwctly
detected, called the tmpcmitive probability, is -ti.ccmted as tht ama undar the clashed histogrun above the
threshold. The probability c4 fabely stating ● disc to be p~t, the fakpodiva probability, is the erea
under the solid curve above tb threahdd. AJ the threshold in lowered to in~ the truepoaitive rate,
the fahe-paitive rate also i.n~. According to Ba~, ● thematically optimum choice of the thrmhcdd
value CM be made cm the We of the mlatlve costs tiated with correctly amd inconectly det~ting ditcs.
I?owever, when dealing with human obsarwm, them histograms are not explicitly observable and the choice
of the threshold h imphcitly made by the obo.ermr. The ralatlon.ship between the two h.htogrum distributions
is often ch.ura.cterized by the detectmbi.lity index d’, givm by

(1)

where ~); and al are the nMUI and ITXUdeviwitm of thd frequency distribution when the object is prewnt and
three with the subscript O an when the object Is not prooant, This ic emnethnez called the mignal-tmnoin
ratio (SNR) for detcjctim. For the hjstogrm Aown ArIFig. 4, d’ ie 0.87.

The sane results may ba cUapkyw! M ~ ROC curve [4], which thows tb: variatkm ~f true-positive

probability with fal~poitivo probability u tha dwimon threahdd -, The ROC curve completely
summarises binary det-ectlcm @k perfcmna,nce. Figme 5 ahowo the ROC curve &n=-ted directly from
the di~tributi~ in Fig. 4. comp~~ ht~ the ROC curves produced by uncocutrdned ART and
con.strai.mxl MT sh~m that the nonnegativity corutraht haJ dramatically u-dmncad the perform.ante of
tlus detection task. The uea UDCk the HOC curve A is known to be the -e M the fraction of correct
~c~ that would be obtdwd in ● twmaltemative forced choice qmrunent [8], The area under the ROC
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DECISION VARIABLE, ~

Figure 4: The fhqmncy distnbutione of the decizion variable (the sum over a circular region) evaluated
where a low-contrezt diet is known to exiet (dashed iine) and where none exists (solid line) for ART recon-
~t~ctio~ without the nonnegatiti.ty constraint. Theee reeults summan “ze the performance obtained fim

reconztructiona from 12 views for 10 randomly-generated scenes.

M.o 0.s Q.U 0.6 eaa 1.0

FALSUPOSITIW d PROBABILITY

Figure 5: The mcdver operating cbaracteristi: (ROC) curIM derivedfrom the fkuency distributions shown
in Fig. 4; that is, for unconstrahwd ART (eolid line) and the came for reconstructions obtained with the
ncmnegativity cautrdnt (daehed line). The nonxw@ivity ca.Wraint is men to markedly improve task
perf ammnca siace it~ UIC curve is always significantly above that for no constraints.
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Table 1: Summaqy of the efkct of the nonnegativity constraint on the detectability index CfAdetermined
horn the arm under the ROC curve, for various kinds of projection data. These results were obtained from
tests made on the CT reconstructions of 10 randomly generated scenes for various kinds of deficiencies in
the data Note that ● indicates d’ (calculated horn the means and variances of the frequency distributions
using (1) ) was used instead of dA because of the statistictd inaccuracy of the latter.

no. proj. Ae m d.4

“7

Improvement
(deg.) noise without with

constraint

I 100 I 180 I 8 I 1.98 2.00 [ +1%
100[ 180/ 4] 4.10 * 3.94 *J -4Yo

8 180 0 0.45 0.79 + 76%
12 180 0 0.89 2.30 + 158%
16 180 0 1.94 5.51 * + 184%

t---

, , ,
161 WI o I 1.19 2.49 1 +109%
32 90 0 1.25 3.57 + 186%

16 180 2 1.63 2.74 +69%

curve in Fig. 5 with no constraint is 0.736 compared to 0.948 with the constraint. The area under the ROC
curve may be expressed in terms of an efikctive index for detectability dA, calculated to be the same as d’,
under the assumption of Gaussian-shaped fiwquency histograms

dA = 2 er~-1{2(1 - A)}, (2)

where er~-l is the inverse of the error function. For Fig. 5, a value for dA of 0.89 is obtained for the
case without the constraint and 2.30 with the constraint. Thus, the use of the nonnegativit y constraint haa
increased the detectability by 15870 in this case of a limited number of views.

‘lhble 1 tabulates the results obtained under varying datadaking conditions. To refer the noise level to the
magnitude of the projections, the peak projectia value for the low-contrast discs is 0.80. The nonnegativity
constraint is seen to be generally usefid. The constraint is particularly helpful when the data are limited
by the measurement geometry. It has little efTect when the data are complete but noisy. The CPU time
required to calculate the entries in the table took as long as one hour on a VAX 8700, which is about four
times fasta than a VA2C 78L.

It was noted in essentially all situations tested that, even though the histograms did not always appear
to pos.ess Gaussian shapes, d’ was very close to being the same as dA. This is useful to know because d’ haa
betterstatisticalaccuracythau dA and is more likely to be a continuous f%nction of the parameters that can
be varied in the reconstmction procedure. This makes d‘ the performance index of choice for the purpose
of optimizing the reconstruction technique.

Discussion

We have presented a new method to test the effbctiwmem of reconstruction algorithms. This method is
based cm ● Monte Carlo aimulaticm of the complete hwging process tim the composition of the original
scene to the final interpretaticm of the remnstructad image. The accuracy with which a specified task is
perfmmed is the goal of the d.mulatitm. This method is in accordance with the notion that an dgc.ithm can
only be properly evaluated by trying it out on a statistically mmdngftd sample of trials. A xnqjor advantage
of the Monte Carlo technique is that new eff’ts may be easily added. On the other hand, only the overall
effect of all the conditions is observed. It is difllcult to determine the relative contributions of individual
effects. The Monti Carlo sirmdaton technique is particular y useful in sit Uations that do not lend themselves
to analytic analysis. [t can provide a good statistical sam14ing over dl the uncontrollable variables in the
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problem. An example of this is the typical problem of the effkct of discrete sampling on signal analysis
as, for exampie, in the problem of the detection of small objects. In such a case, what makes sense is to
average the detectability over all possible positions of the object reiative to the discrete measurements and
the reconstruction grid [9]. The Monte Carlo method is perfect for this.

\Ve have seen that the nonnegativity constraint is generally usefid for the specific problem addressed
here - detection of low-contrast discs in the presence of high-contrast discs using CT reconstructions. This
constraint is particularly helpful when the data consist of a limited number of noiseless projections. “Wen the

data are complete but degraded by additive noise, the nonneg,ativity constraint does not improve detectability.
Some irnprovcrnent is obtained when the data are both ‘incomplete and noisy. The effectiveness of the
nonnegativity constraint is found to depend on the choice of relaxation parameters used in the ART algorithm.
The optixmd selection needs investigation.

There tue many possible extensions to this prehinary tiort. Alternative choices for the decision vari-
ables could be purrued to obtain improved perf ormance. For example, a weighted sum of the reccmstmction
values over a kal regim could be used. The optimal weights might be determined by using half the simu-
lated reconstructions as a training set and the second half to estimate the task performance index. This
would probably be too difficult to handle in general, but, with suitable restrictions on the number of vari-
ables in the weights, it might be possible. The optimal choice of decision variable could be dependent upon
the reccmstructkm procedure. If this line of research were pursued, it would be reasonable to compare the

ormance of one algorithm against another only on the basis of the best decsision procedure that couldperf
Lx achieved with cdl. As the detecticm task specified in the present ~ple is truly simple and not very
closely related to most real problems, another worthwhile extension would be to explore more complex and
interesting tasks.

Clearly, this approach of random sixmd~tion is generally applicable to test any or all aspects of the entire
imaging chain lbsn scene generation to th~ @al method of task performance. Possibly a very fruitful line of
research that crm be addressed using this approach is the optimization of the imaging system, either in terms
of its individual parts or in its entirety. If many parameters are to be varied in the opimizetion, one must be
concerned about the stability c4 the optimization proccsa. Regularization may be required to statilize the
search for the optimum.
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